Verifying Resilient Software

P. E. Black*
Computer Science Department
Brigham Young Unwversity
Provo UTAH 84602-6576
p.black@ieee.org

P. J. Windley
Computer Science Department
Brigham Young Unwversity
Provo UTAH 84602-6576
windley@cs.byu.edu

Copyright 1997 IEEE. Published in the Proceedings of the Hawai’i International
Conference on Systems Sciences, January 7-10, 1997, Kihei, Hawaii.

Abstract

We ezplore the tension between adding functionality to
create resilient software and minimizing functionality
to make it more feasible to formally verify software.
To illustrate the effects of this trade-off, we ezamine
a tiny ezample in detail. We show how code written
with a good style may be hard to verify, specifically that
the test condition is troublesome. We also show that a
test condition “improved” in an attempt to make the
verification more straight-forward worsens the failure
characteristics.

To demonstrate the effect in an actual situation, we
ezamine o secure web server, thitpd, its design prin-
ciples and security features. We discuss how the se-
curity features introduce redundancies making verifi-
cation harder, but also present some of its formal ver-
ification to show that verification is feasible.

We conclude that software should be designed with nec-
essary redundancies and that the temptation to over-
simplify the design in order to formally verify it should
be resisted.

1 Introduction

Safety critical and other kinds of high reliability
software are often required to be tolerant of faults.
This tolerance usually comes by anticipating faults
and adding functionality to prevent faults from caus-
ing failures.

One key approach used to tolerate failures
is redundancy. In this approach, a system
may employ a multiple number of processes,
a multiple number of hardware components,
multiple copies of data, etc. [11]

This includes, of course, the software to update copies,
switch to backups, detect and recover from faults, etc.
Redundancy in software usually appears as extra fea-
tures to check results. In security applications this
redundancy may be manifest as multiple guards to
prevent undesired outcomes.

*This work was sponsored by the National Science Founda-
tion under NSF grant MIP-9412581

Formal verification is a means to investigate the
consistency and completeness of specifications, prop-
erties, models of implementations, assumptions, and
inference rules [1]. Since by definition formal verifi-
cation excludes informal arguments, one cannot gloss
over properties which are “obviously true” but are
hard to prove. Thus formal verification tends to be
tedious, covering all facets. We tend to abstract away
detail and eliminate any features which make verifica-
tion difficult. There is also the temptation to believe
that a successful formal verification means the code is
completely error-free and that therefore fault handling
is unnecessary. If taken to an extreme, we would re-
move or ignore the very redundant functionality which
adds reliability or safety.

Section 2 is a very simple example which we exam-
ine in detail. We show that the good, resilient style
is harder to verify, and that an arguably acceptable
implementation is easier, but has worse failure modes.
Section 3 presents an actual product, thttpd, a se-
cure web server. We show that redundant security
features do, indeed, translate into additional software
and difficult-to-verify properties and realizations. Sec-
tion 4 examines the verification of one facet of the
security properties to demonstrate the difficulties en-
countered. Since we use notations and concepts which
are quite familiar to some people, but totally new to
others, we explain some syntax and meaning of ax-
iomatic semantics, the inference system we use in this
paper, in Appendix A.

2 Loop Redundancy

To illustrate the apparent tension between resilient
software and software which is easy to verify, we begin
with a simple example. We will show that a good, re-
silient style leads to code which is superficially harder
to verify. We also show that there is a temptation
to change the code to make the verification easier, but
the change loses desirable properties of the good style.

The example problem is to write a fragment of C
code to compute z = z¥ using repeated multiplication.
We state that x and y are integers, that y > 0, and
ignore the limitations of computer arithmetic to sim-
plify the example. A good programmer might produce
the following code fragment.

c <y; ctt) {

To make this example clearer, we replace the semanti-
cally complex for loop with an equivalent and seman-
tically simpler while loop.

z = 1;
c =0;
while (¢ < y) {
z *= X;
c++;
}
Let’s attempt to verify the code fragment. Infor-
mally our aim is to prove that z = z¥ at the end.

More formally we must prove that the following:
e The loop terminates.

e The variable z has the value z¥ if the loop termi-
nates.

Note that we must be sure that x and y have the same
values as at the beginning of the code fragment. Oth-
erwise we would judge a code fragment that merely
sets x, y, and z to 1 (thus trivially satisfy z = z¥!)
to be correct. Using ' and 3’ to represent the initial
values of x and y, a more complete goal is to prove

{z=2'Ay=vy'}code{z=2'Ay=9y Az=12z¥}

Preserving initial values is a vital and often-overlooked
point, but since it adds nothing to the example, we will
assume x and y do not change. We defer discussion of
the proof of loop termination.

Ignoring the side issues, the obvious loop invariant
is z = °. The inference rule for while loops ([6], pp.
24-25) is

F {Invariant A COND} BODY {Invariant}

F {Invariant} while (COND) BODY
{Invariant A ~COND}

If we assume the loop invariant holds, we can conclude
from the rule that at termination the invariant is true
and the loop condition is false. That is, z = z°A™~ (e <
y) or more simply, z = z°Ac > y. However, we cannot
prove z = z¥ since we cannot prove ¢ = y. But anyone
can see that the code is correct; where is the problem?

First, let us convince ourselves that the failure to
prove is proper, in other words that the problem is not
in the inference rule. Note that the rule for while loops,
doesn’t explicitly include the body in supporting the
postcondition. Suppose the increment in the loop is
different:

while (c < y) {
Z =2z % X * X;
c += 2;

}

Clearly ¢ might not be equal to y when the loop exits.
Since this is a possibility, the inference rule was correct
in not letting us conclude z = z¥.

2.1 Simplifying the Loop to Verify It
Obviously we can change the code so the termina-
tion condition is exactly what we need:

while (c !'= y) {

From this we can conclude z = z° A ~~(¢ = y) and
therefore z = z¥. Since we can prove our result with
this condition, why does good programming style pre-
fer ¢ < y?

The test ¢ < y leads to termination under a wider
variety of conditions than c¢ != y. If the test is
¢ != y, we can draw very strong conclusions at termi-
nation precisely because the loop only terminates in
a very particular condition. However since it is often
easier to compensate for an incorrect result than an in-
finite loop, resilient coding practice prefers ¢ < y even
though we can infer less about the conditions which
hold at termination.

It is interesting to note that Edsger W. Dijkstra ([5],
pp. 56-57) advocates the opposite coding style: clear
verification even at the expense of good failure char-
acteristics. He argues that if a later program change
introduces an error or a machine failure occurs, us-
ing ¢ < y may terminate with an undesired (wrong)
result, but no other notice. Using ¢ != y always es-
tablishes the termination condition, or else it doesn’t
terminate! We disagree with this coding style since
a single failure in the compiler, operating system, or
hardware could lead to complete collapse of the pro-
gram function or security.

2.2 Verifying the Original Loop

So that the reader does not incorrectly conclude
one must choose between verification and resilience we
show how we can keep the test ¢ < y and still prove
the termination condition. We noted above that the
exit condition of a while loop doesn’t refer to the body
code. This suggests we carry more information in the
loop invariant. The invariant must guarantee that c
doesn’t increase much in each loop. An adequate loop
invariant is

z=z°Ne<ly

At the end of the loop we can conclude
z=z°ANe<yA~(c<y)

that is
z=z°ANe<yAc>y

From the two inequalities we can conclude ¢ = y, and
therefore z = z¥ if the loop terminates.

Let us return to the issue of verifying termination.
We can prove termination by showing that a value,
such as y — ¢, is always nonnegative in the loop and
decreases with each iteration. As was pointed out to
us, proving this is straight forward with the resilient
loop test ¢ < y. Interestingly enough, Dijkstra’s sup-
posedly more direct test ¢ != y needs the condition
¢ < y in the invariant in order to prove termination.
In this case changing the code to ease the verifica-
tion does not really help. The actual example in the
next section shows there may be a trade off between
resilient design and ease of verification.

3 A Secure Web Server

In June 1995, Management Analytics wrote a se-
cure World Wide Web server called thttpd. (It is
named for HTTP, the HyperText Transfer Protocol,
which is the most common protocol for WWW on the
Internet. HTTP is operationally similar to FTP, but
is enhanced and optimized for Web interaction.) The
code consists of about 100 lines of C. They point out
[3, 4] that

The main risk to providers of [web] services
is that someone might be able to fool their
server software into doing something it is not
supposed to do, thus allowing an attacker to
break into their server and do some harm.

Their

...solution to the security problem with
servers is to design a secure server with secu-
rity properties that can be explicitly demon-
strated.

They then list the general properties of interest as in-
formation integrity (no information on the server can
be corrupted by outside users), availability of service
(outside users cannot deny services to other users),
and confidentiality (the server only provides informa-
tion which is explicitly authorized for outside access).

3.1 Design Features
To assure these properties, they incorporate the fol-
lowing design features.

e Small Size, so it is feasible to thoroughly examine
for security properties,

e Confinement of Operating Privileges, using the
Unix command setuid to run as a non-privileged
user (named “www”) so

...the basic operating system protec-
tion features (e.g., access control, pro-
cess separation, limited input and out-
put capabilities) that are used by mil-
lions of people every day are used to
protect the server ...

and to

...trace the activities of the daemon
[which] makes automatic detection of
anomalous behavior very easy ...

e Confinement of File System Access, using the
Unix command chroot to avoid access to sen-
sitive or special files, such as password or device

files,

e Confinement of File Output, by only writing to a
single, predefined log file,

e Confinement of Information Flow, by reading
only one fixed size request from the user,

e Confinement of File Inputs, by only opening files
which are owned by “www” and “world” readable.

All of these features lead to an intentional redun-
dancy in protection methods. They

take a multitude of precautions so that if and
when one fails, the others will prevent harm,
give warning, and allow response to counter
the detected weakness before it becomes a
full-fledged vulnerability.

For example since thttpd makes several different
checks before returning a file, the failure of one li-
brary function, such as chroot or geteuid, is unlikely
to compromise security. (Redundant precautions also
means that users or operators on the server must take
several particular steps to make files available, but also
reduces the chance that a human error will allow a
breach.)

4 Verifying Properties of Thttpd

This redundancy adds to the verification burden.
About ten percent of the code could be completely
eliminated if thttpd did not have redundancy. In ad-
dition to just having less code to examine, the code
which could be eliminated includes system calls and
concerns properties used no where else in the program.
such as chroot and the process’ user ID. Not only
must the calls (chroot, setuid, etc.) be modeled to
demonstrate that they cause no problems, but their
areas of concern (process privilege, file system access,
etc.) must be taken into account for all other com-
mands and calls to assure that those don’t interfere.

The temptation appears to remove some of the re-
dundant features to ease the task of verification. Af-
ter all, if the code is formally verified, there are no
errors in it, right? Formal verification exposes hidden
assumptions and classes of errors, but are not an abso-
lute guarantee. For example, Management Analytics
reports a human error of incorrectly putting files in
the thttpd’s file area. Since the permission were not
correct, they were not exposed. Had file access been
the only confinement, they would have been. An oper-
ating system flaw or compiler failure could have led to
similar consequences. We maintain, then, that sound
design is vital, even with complete formal verification.
As the termination condition showed in the example in
Section 2, verification of the resilient design may not
be much harder than a “simpler” design. To illustrate,
we show some details of verifying thttpd hereafter.

To begin, we note that the top-level goal or pred-
icate must be a conjunction of all the highest level
properties. That is, all the properties must hold in
order to conclude that the software satisfies our con-
ditions. The properties can be verified separately, then
we can conclude their conjunction.

We start with wanting to prove isSecure(thttpd).
We define isSecure(thttpd) as

hasIntegrity(thttpd) A is Available(thttpd)
A isCon fidential(thttpd)

which are the three general properties of interest.
Confidentiality is provided in this case by redundant

features: confinement of operating privileges, confine-
ment of file system access, and confinement of file in-
puts. Any one of these should be sufficient to establish
confidentiality. But to offer defense in depth, thttpd
has all three. We must prove all the properties one
at a time to show that, indeed, we have redundancy.
If instead one property depends on another, we don’t
have complete independence or redundancy. To con-
clude that thttpd is secure even if one or two of the
properties fail, we must verify security given only the
weaker disjunction of these redundant properties.

Notice than that the software may be proved re-
liable by proving the top-level properties in conjunc-
tion, that is, all properties must hold. However the
properties should be proven independently (without
relying on each other) if possible. Redundant prop-
erties which support a top-level property by lines of
defense must be proven independently of each other.
The top-level property, such as security, is then be
proven with the disjunction of redundant properties.
That is, if any of the redundant properties hold, the
software is safe.

4.1 Verifying a Single Property

To use axiomatic semantics, we must turn predi-
cates on programs into statements about initial and
final states at some point. Concentrating on the first

general property (and skipping some details), we can
define hasIntegrity(thttpd) as

F {FileState file} thttpd
{file # LogFile —> FileState file}

This states that thttpd will never change any file ex-
cept possibly the log file. A more literal reading is,
given that each file is initially in some state, execut-
ing thttpd leaves each file (except the log file) in the
same state.

The actual definition is more complicated since the
predicates are given in terms of files in a file system.
For example, FileState file above is actually

IV fhandle . StateOfFile fhandle
(getFile FileSystem fhandle)

where getFile gives the contents of a file (handle)
in a file system and State0fFile is an under-defined
predicate which “fixes” the contents of a file (handle)
at an undefined time. However this complexity is not
relevant to the discussion at hand.

What about changing file permissions, moving or
renaming a file, or deleting or creating files? File per-
missions can be included in the file state. Moving
or renaming a file can be thought of as deleting the
original file and creating a new file. Since we have ab-
stracted the file system, we can consider FileState a
function over all files which could ever exist, not just
the files currently in the file system. Deletion is mark-
ing a file as “completely inaccessible,” and creation is
marking a file as “accessible” and setting its contents.
So all these changes can be seen as changing the state

of files.

Each system call must have an axiom which states
if and when the file system is changed. Here is an
example of the axiom for fprintf calls (from [9]).

F {FileState file} fprintf(stream, format,...)
{(IFPRINTF error.C Result = —FPRINTF error)
A(inSomeCasesOf C_Result
(JFPRINTF _errno.errno = FPRINTF errno))
AFileState fileV
(CResult = 0) AFileState file V
CResult >0
A(file = fileOf(deref stream)) =
writeFile(deref stream)
(fprintfSpec format C_args) |
FileState file}

The post condition means that fprintf has three pos-
sible results: it may fail with a negative result (and in
some cases set the global variable errno), it may fail
with a 0 result, or it may write the information to the
stream.

As a side note, while verifying thttpd we proved
that the transaction logging function does not change
any other files, but we could not prove that it did
write to the log file to log transactions. We coded
the fprintf axiom directly from the manual page,
which allows that fprintf may fail to write anything.
The formal verification exposed our assumption that
fprintf calls always succeed. We can still prove that
transactions are logged if we change the model so that
fprintf never fails or add the assumption that it
never fails.

From the beginning of software verification, re-
searchers understood that finding serviceable verifica-
tion conditions took skill. As Manna and Waldinger
state [10]:

Finding Invariant Assertions: Although the
invariant assertions required to perform the
verification are guaranteed to exist, to find
them one must understand the program thor-
oughly. Furthermore, even if we can discover
the program’s principal invariants ...we are
likely to omit some subsidiary invariants
(e.g., ¥y > 0 above) that are still necessary
to complete the proof.

4.2 How Much Verification is Done?

The complete verification of thttpd is still some
time in the future. We still need to incorporate ar-
rays and handle time-out’s and non-local jumps. We
also want to justify our inference system from a deno-
tational semantics.

It has been our experience that the proof proceeds
fairly quickly once the infrastructure is in place and
the properties and system calls have been formalized.
It is building the infrastructure and this formalization
which takes the time. We have worked on the verifica-
tion over a year and hope to finish within a year. At
that time we expect that verification of similar soft-
ware, such as a secure gopher server, will only take a
few weeks.

5 Conclusions

Highly reliable software will intentionally contain
redundant functionality. This redundant functional-
ity may increase the verification task simply because
there is more code to verify, but also because there are
more properties to verify and the code has tolerance
(“sloppiness”) built-in.

Even if the verification task is harder, it is still
tractable. In some cases it is not much harder than
thorough verification of apparently “simpler” code. In
other cases simple approaches, such as proving prop-
erties independently then combining them, suffice to
prove safety. So although there may be a temptation
to simplify the code in order to simplify the proof,
this may not be a gain, and will likely lose desirable
properties.

Although we have considered only post-hoc for-
mal verification of source code, we believe these con-
clusions apply to complimentary quality control ap-
proaches such as validation and testing, too. Although
some changes may ease the task of verification, vali-
dation, or testing, sound designs practices should not
be (and perhaps need not be) sacrificed.

Acknowledgments

We are grateful to Dr. Frederick B. Cohen of Man-
agement Analytics for letting us use thttpd as a test
case for verification. We are also grateful to the anony-
mous reviewers whose detailed and thoughtful com-
ments greatly improved this paper. We regret we can-
not cite them properly.

References
[1] P. E. Black, K. M. Hall, M. D. Jones, T. N. Lar-
son, and P. J. Windley, “A Brief Introduction to
Formal Methods,” Proceedings of the Custom In-
tegrated Circuits Conference, San Diego, Califor-
nia, May 1996.

[2] P. E. Black and P. J. Windley, “Inference Rules
for Programming Languages with Side Effects in
Expressions,” to appear in Proceedings of The
1996 International Conference on Theorem Prov-
ing in Higher Order Logics, Turku, Finland, Au-
gust, 1996.

[3] F. B. Cohen, “Why is thttpd Secure?”
http://all.net/ManAl/white/whitepaper.html or
http://all.net/ — Products — Secure hitp and go-
pher daemons. (14 March 1996).

[4] F. B. Cohen, “A Secure World Wide Web Dae-
mon,” Computers and Security, submitted, 1995.

[5] E. W. Dijkstra, A Discipline of Programming.
Prentice-Hall, Inc., New Jersey, 1976.

[6] M. J. C. Gordon, Programming Language Theory
and its Implementation. Prentice-Hall, Inc., New
Jersey, 1988.

[7] M. J. C. Gordon and T. F. Melham (Eds.), In-
troduction to HOL: A Theorem Proving Environ-
ment for Higher Order Logic. Cambridge Univer-
sity Press, 1993.

[8] C. A. R. Hoare, “An Axiomatic Basis for Com-
puter Programming,” Communications of the
ACM, vol. 12, October 1969, pp. 576-583.

[9] HP-UX on-line manual, HP-UX Release 9.0: Au-
gust 1992, Hewlett-Packard Company, Palo Alto,
California.

[10] Z. Manna and R. Waldinger, “The Logic of
Computer Programming,” IEEE Transactions on
Software Engineering, vol. SE-4, no. 3, May 1978,
pp. 199-229.

[11] M. Singhal and N. G. Shivaratri, Advanced Con-
cepts in Operating Systems. McGraw-Hill, Inc.,
New York, 1994, page 330.

A Axiomatic Semantics

This appendix briefly explains some notations we
use in the paper.

Our verification work is done in the HOL theorem
prover [7, 2]. The syntax

FA

means that A is a theorem. In HOL, all free variables
are assumed to be universally quantified. Variables
may range over functions as well as simple types, and
function application is implicit. Thus - Pz means
“for all P and z, P(z) is true.”

Our notation is based on axiomatic semantics [8].
There are two main types of statements: partial cor-
rectness and total correctness. An axiomatic state-
ment of partial correctness is

F {Precondition} Code {Postcondition}

where Precondition and Postcondition are predi-
cates on the state of the computation and Code is a
fragment of code. The meaning is: if Code is exe-
cuted in a state which satisfies Precondition and it
terminates, Postcondition will be true. In this case,
“terminates” means that the code doesn’t loop indef-
initely or abort abnormally. For example,

Fly=3}tx=y;{z =3}

A statement of total correctness is similar, but asserts
that the computation always terminates. The syntax
uses square brackets ([and]) instead of curly braces
({ and }). For instance, the above assignment always
terminates, so we can prove

Fly=3lx=y;[z=3]
An inference rule has the form

FA,...,FB
FC
The meaning is: if all of the hypotheses A4,..., B are

true, one can conclude C. Any number of hypotheses
may qualify one conclusion.

